Floresta e Ambiente
http://www.floram.periodikos.com.br/article/doi/10.1590/2179-8087.021317
Floresta e Ambiente
Original Article Conservation of Nature

Distance and Intensity of Microclimatic Influence Provided by Urban Forest Typologies

Angeline Martini; Daniela Biondi; Antônio Carlos Batista

Downloads: 0
Views: 1233

Abstract

ABSTRACT: The main goal of this study was to determine the radius and intensity of the influence that different urban forest typologies exert on their surroundings. Thus, three distinct areas were selected for each type of urban forest: Remaining Forest, Old Green Area, Modern Green Area, Street Trees and Isolated Trees. The influence of these typologies on the surrounding microclimate was determined by mobile transects, collecting data every 50 m from a total route of 500 m in an adjacent street. In general, the influence radius of the urban forest on its surroundings was 200 m, while the Remaining Forest typology reached 250 m. On average, the influence intensity of urban forest at a distance of 50 m was 0.66ºC, at 100 m it was 0.45ºC, at 150 m it was 0.34ºC, and at 200 m it was 0.30ºC, but each typology varied. All microclimate results were more pronounced in summer. We concluded that the urban forest exerts a significant climatic influence on its surroundings, regardless of the typology.

Keywords

urban microclimate, microclimatic benefit, afforestation

References

Abreu LV. Avaliação da escala de influência da vegetação no microclima por diferentes espécies arbóreas [dissertação]. Campinas: Faculdade de Engenharia Civil, Universidade Estadual de Campinas; 2008.

Adams MP, Smith PL. A systematic approach to model the influence of the type and density of vegetation cover on urban heat using remote sensing. Landscape and Urban Planning 2014; 132: 47-54. http://dx.doi.org/10.1016/j.landurbplan.2014.08.008.

Barros MP. Dimensão fractal e ilhas de calor urbanas: uma abordagem sistêmica sobre as implicações entre a fragmentação das áreas verdes e o ambiente térmico do espaço urbano [tese]. Cuiabá: Universidade Federal de Mato Grosso; 2012.

Biondi D, Batista AC, Martini A, Grise MM. O efeito microclimático do bosque Capão da Imbuia na cidade de Curitiba - PR, Brasil. In: Anais do V Congreso Forestal Latinoamericano; 2011; Lima. Lima: Facultad de Ciencias Forestales - UNA La Molina; 2011.

Brown RD, Vanos J, Kenny N, Lenzholzer S. Designing urban parks that ameliorate the effects of climate change. Landscape and Urban Planning 2015; 138: 118-131. http://dx.doi.org/10.1016/j.landurbplan.2015.02.006.

Buyadi SNA, Wan Mohd WMN, Misni A. Quantifying green space cooling effects on the urban microclimate using remote sensing and gis techniques. In: Proceedings of the XXV International Federation of Surveyors; 2014; Kuala Lumpur. Kuala Lumpur: FIG; 2014. p. 1-16.

Cao X, Onishi A, Chen J, Imura H. Quantifying the cool island intensity of urban parks using ASTER and IKONOS data. Landscape and Urban Planning 2010; 96(4): 224-231. http://dx.doi.org/10.1016/j.landurbplan.2010.03.008.

Dacanal C. Fragmentos florestais urbanos e interações climáticas em diferentes escalas: estudos em Campinas, SP [tese]. Campinas: Faculdade de Engenharia Civil, Arquitetura e Urbanismo, Universidade Estadual de Campinas; 2011.

Dimoudi A, Nikolopoulou M. Vegetation in the urban environment: microclimatic analysis and benefits. Energy and Building 2003; 35(1): 69-76. http://dx.doi.org/10.1016/S0378-7788(02)00081-6.

Donovan GH, Butry DT. Trees in the city: valuing street trees in Portland, Oregon. Landscape and Urban Planning 2010; 94(2): 77-83. http://dx.doi.org/10.1016/j.landurbplan.2009.07.019.

Gartland L. Ilhas de calor: como mitigar zonas de calor em áreas urbanas. São Paulo: Oficina de Textos; 2010.

Giralt RP. Conforto térmico em espaços públicos abertos na cidade de Torres – RS [dissertação]. Porto Alegre: Faculdade de Arquitetura, Universidade Federal do Rio Grande do Sul; 2006.

Hamada S, Ohta T. Seasonal variations in the cooling effect of urban green areas on surrounding urban areas. Urban Forestry & Urban Greening 2010; 9(1): 15-24. http://dx.doi.org/10.1016/j.ufug.2009.10.002.

Hamada S, Tanaka T, Ohta T. Impacts of land use and topography on cooling effect of green areas on surrounding urban areas. Urban Forestry & Urban Greening 2013; 12(4): 426-434. http://dx.doi.org/10.1016/j.ufug.2013.06.008.

Honjo T, Takakura T. Simulation of thermal effects of urban green areas on their surrounding areas. Energy and Building 1990; 15(3-4): 443-446. http://dx.doi.org/10.1016/0378-7788(90)90019-F.

Huang L, Li J, Zhao D, Zhu J. A fieldwork study on the diurnal changes of urban microclimate in four types of ground cover and urban heat island of Nanjing, China. Building and Environment 2008; 43(1): 7-17. http://dx.doi.org/10.1016/j.buildenv.2006.11.025.

Instituto de Pesquisa e Planejamento Urbano de Curitiba – IPPUC. Desenvolvimento sustentável: indicadores de sustentabilidade de Curitiba – 2010. Curitiba: IPPUC; 2011.

Jiang B, Larsen L, Deal B, Sullivan WC. A dose–response curve describing the relationship between tree cover density and landscape preference. Landscape and Urban Planning 2015; 139: 16-25. http://dx.doi.org/10.1016/j.landurbplan.2015.02.018.

Jim CY, Lo AY, Byrne JA. Charting the green and climate-adaptive city. Landscape and Urban Planning 2015; 138: 51-53. http://dx.doi.org/10.1016/j.landurbplan.2015.03.007.

Leal L, Martini A, Biondi D, Batista AC. Levantamento meteorológico expedito para análise da influência microclimática do Bosque Estadual João Paulo II. In: Anais do IV Encontro Sul-Brasileiro de Meteorologia; 2011; Pelotas. Pelotas: SBMET; 2011. p. 1-9.

Lee S-W, Hwang S-J, Lee S-B, Hwang H-S, Sung H-C. Landscape ecological approach to the relationships of land use patterns in watersheds to water quality characteristics. Landscape and Urban Planning 2009; 92(2): 80-89. http://dx.doi.org/10.1016/j.landurbplan.2009.02.008.

Lin W, Yu T, Chang X, Wu W, Zhang Y. Calculating cooling extents of green parks using remote sensing: method and test. Landscape and Urban Planning 2015; 134: 66-75. http://dx.doi.org/10.1016/j.landurbplan.2014.10.012.

Martini A, Biondi D, Batista AC, Lima EM No. Microclima e conforto térmico de um fragmento florestal na cidade de Curitiba - PR, Brasil. In: Anais do V Congreso Forestal Latinoamericano; 2011; Lima. Lima: Facultad de Ciencias Forestales - UNA La Molina; 2011.

Martini A, Biondi D, Batista AC, Silva DF Fo. Validação da metodologia de transéctos móveis para coleta de dados microclimáticos no ambiente urbano. In: Anais do XI Simpósio Brasileiro de Climatologia Geográfica; 2014; Curitiba. Curitiba: ABCLIMA; 2014.

Mascaró L, Mascaró JJ. Ambiência urbana. 3. ed. Porto Alegre: +4 Editora; 2009.

Nascimento DTF, Oliveira IJ. Análise da evolução do fenômeno de ilhas de calor no município de Goiânia/GO (1986 - 2010). Boletim Goiano de Geografia 2011; 31(2): 113-127.

Raskovic S, Decker R. The influence of trees on the perception of urban squares. Urban Forestry & Urban Greening 2015; 14(2): 237-245. http://dx.doi.org/10.1016/j.ufug.2015.02.003.

Shashua-Bar L, Hoffman ME. Vegetation as a climatic component in the design of an urban street. An empirical model for predicting the cooling effect of urban green areas with trees. Energy and Building 2000; 31(3): 221-235. http://dx.doi.org/10.1016/S0378-7788(99)00018-3.

Shishegar N. Street design and urban microclimate: analyzing the effects of street geometry and orientation on airflow and solar access in urban canyons. Journal of Clean Energy Technologies 2013; 1: 52-53. http://dx.doi.org/10.7763/JOCET.2013.V1.13.

Thundiyil KA. Rising temperatures and expanding megacities: improving air quality in Mexico City through urban heat island mitigation [thesis]. Ann Arbor: Massachusetts Institute of Technology; 2003.

Yu C, Hien WN. Thermal benefits of city parks. Energy and Building 2006; 38(2): 105-120. http://dx.doi.org/10.1016/j.enbuild.2005.04.003.
 

5a9feb4b0e8825850377d860 floram Articles
Links & Downloads

FLORAM

Share this page
Page Sections