Floresta e Ambiente
http://www.floram.periodikos.com.br/article/doi/10.1590/2179-8087-FLORAM-2025-0003
Floresta e Ambiente
Original Article Forest Products Science and Tecnology

Pyroligneous Acid as a Natural Preservative for Clonal Material of Eucalyptus Wood

Thatiele Pereira Eufrazio de Moraes; Raquel Marchesan; Karolayne Ferreira Saraiva; Vanessa Coelho Almeida; Luiz Fernandes Silva Dionísio; Rodrigo Araújo Fortes; Adriano Guimarães Carvalho; Cristiano Bueno de Moraes; Danival José de Souza

Downloads: 0
Views: 64

Abstract

Abstract: This study aimed to determine the resistance of Eucalyptus wood clones after exposure to the soil in a decay field. Samples taken from the heartwood of 3 Eucalyptus camaldulensis x Eucalyptus grandis hybrid trees were used for the pyroligneous liquor, chromated copper borat, and untreated treatments, where physical, chemical, and mechanical tests were used for evaluation. Chemical and mechanical analysis demonstrated that there was interaction between factors and significant differences between and within treatments. Wood treated with pyroligneous liquor showed lower solubility in cold water when compared to CCB and, therefore, lower leaching. Both treatments were statistically equal in terms of MOR resistance and mass loss. It was concluded that treating Eucalyptus wood with pyroligneous acid, compared to treatment with CCB and untreated wood, was equally efficient mainly for the property of resistance to static bending, showing potential as a preservative product.

Keywords

Decay field, Basic density, Degradation, Mechanical resistance, Wood treatment

References

Alvares CA, Stape JL, Sentelhas PC, Gonçalves, JLM, Sparovek G. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift 2013; 22(6): 711-728. Available from: https://doi.org/10.1127/0941-2948/2013/0507 .

Associação Brasileira de Normas Técnicas. Peças roliças preservadas de eucalipto para construções rurais – Requisitos. NBR-9480. Rio de Janeiro; 2009. Available from: https://www.normas.com.br/visualizar/abnt-nbr-nm/511/nbr9480-pecas-rolicas-preservadas-de-eucalipto-para-construcoes-rurais-requisitos .

Associação Brasileira de Normas Técnicas. Penetração e retenção de preservativos em madeira tratada sob pressão. NBR 6232. Rio de Janeiro; 2023. Available from: https://www.normas.com.br/visualizar/abnt-nbr-nm/2441/nbr6232-penetracao-e-retencao-de-preservativos-em-madeira-tratada-sob-pressao .

Associação Brasileira de Normas Técnicas. Preservação de madeiras – Sistema de categorias de uso. NBR 16143. Rio de Janeiro; 2024. Available from: https://www.normas.com.br/visualizar/abnt-nbr-nm/32706/abnt-nbr16143-preservacao-de-madeiras-sistema-de-categorias-de-uso .

Baraúna EEP, Paes JB, Monteiro, TC, Moulin JC, Ferreira GL, Silveira AG et al. Influence of impregnation with boron compounds in the physical properties of Eucalyptus wood. Scientia Forestalis 2020; 48(128): e3383. Available from: https://doi.org/10.18671/scifor.v48n128.09

Camlibel O. Chemical analysis of birch tree (Betula pendula Roth) degraded by fungus. BioResources 2020; 15(2): 4353-4361. Available from: http://dx.doi.org/10.15376/biores.15.2.4353-4361 .

Cheng J; Sun Q; Liu L. Modified biochar-immobilized Bacillus spp. for the release of nutrients and its response to soil microbial community activity and structure. Industrial Crops and Products 2025; 225, 120466. Available from: https://doi.org/10.1016/j.indcrop.2025.120466 .

Comission Panamericana de Normas Técnicas. Maderas: método de ensayo de flexión estática. COPANT 555. Caracas; 1973. Available from: https://apps.copant.org/cat/CpntNorstdList .

Dias ACC; Marchesan R.; Almeida VC; Monteiro TC; Moraes CB. (2018). Relação entre a densidade básica e as retrações em madeira de teca. Revista Ciência da Madeira (Brazilian Journal of Wood Science) 2018; 9(1), 37-44. Available from: 10.12953/2177-6830/rcm.v9n1p37-44 .

European Committee for Standardisation. EN 1250-2. Wood preservatives – Method for measuring losses of active ingredients from treated timber – Part 2 – Laboratory method for obtaining samples for analysis to measure losses by leaching into water or synthetic sea water. Berlin; 1995. Available from: https://www.dinmedia.de/en/pre-standard/din-v-env-1250-2/2523075 .

European Committee for Standardisation. EN 350: Durability of wood and wood-based products. Testing and classification of the durability to biological agents of wood and wood-based materials. Brussels; 2016. Available from: https://standards.iteh.ai/catalog/standards/cen/b02d18a7-87ce-4a20-84c7-c0de641a2780/en-350-2016 .

Hein PRG, Brancheriau L. Comparison between three-point and four-point flexural tests to determine wood strength of Eucalyptus specimens. Maderas: Ciencia y Tecnología 2018; 20(3): 333-342. Available from: http://dx.doi.org/10.4067/S0718-221X2018005003401

Hu SC, Cheng J, Wang WP, Zhu YH, Kang K, Zhu MQ et al. Preparation and analysis of pyroligneous liquor, charcoal and gas from lacquer wood by carbonization method based on a biorefinery process. Energy 2022; 239: 121918. Available from: https://doi.org/10.1016/j.energy.2021.121918

Indústria Brasileira De Árvores - IBÁ. Relatório Anual 2022. IBÁ, 2023, São Paulo, Brasil. Available from: https://iba.org/datafiles/publicacoes/relatorios/relatorio-anual-iba2022-compactado.pdf .

Instituto Brasileiro Do Meio Ambiente E Dos Recursos Naturais Renováveis - IBAMA. Coordenação-geral de avaliação e controle de substâncias químicas e coordenação de controle ambiental de substâncias e produtos perigosos. Certificado de registro de acordo com a portaria interministerial nº 292, de 28/04/89 e a instrução normativa nº 5, de 20/10/92, que regulamenta a lei nº 4.797, de 20/10/65. Instrução Normativa. Brasília; 2021. Available from: https://www.ibama.gov.br/phocadownload/qualidadeambiental/preservativos_de_madeira/2021/2021-07-05-Louro_Fungicida_Industrial_TBP_40.pdf .

Instituto Nacional De Meteorologia - INMET. Ministério da Agricultura, Pecuária e Abastecimento, 2022. Available from: https://portal.inmet.gov.br/

Järvinen J, Ilgin HE, Karjalainen M. Wood Preservation Practices and Future Outlook: Perspectives of Experts from Finland. Forests 2022; 13: 1044. Available from: https://doi.org/10.3390/f13071044

Khademibami L, Bobadilha SG. Recent developments studies on wood protection research in academia: a review. Frontiers in Forests and Global Change 2022; 5: 793177. Available from: https://doi.org/10.3389/ffgc.2022.793177 .

Lima PAF, Sette Jr CR, Silva ASVS, Oliveira JRV, Silveira MF, Gouveia FN. Biological Resistance of Eucalyptus Wood Treated with Chromated Copper Borate to Fungi Decay. Floresta e Ambiente 2020; 27(4): e20180157. Available from: https://doi.org/10.1590/2179-8087-FLORAM-2018-0157 .

Mendiburu F. Agricolae: Statistical procedures for agricultural research. Agricolae package. Lima, Peru; 2023. Available from: https://cran.r-project.org/web/packages/agricolae/agricolae.pdf .

Modes KS, Santini EJ, Vivian MA, Haselein CR. Efeito da termorretificação nas propriedades mecânicas das madeiras de Pinus taeda e Eucalyptus grandis. Ciência Florestal 2017; 27: 291-302. Available from: https://www.scielo.br/j/cflo/a/nDTDy4nhRP334nBdsnLbJZf/ .

Moraes W, Dionisio LFS, Schwartz G, Pereira JA, Damascena JF, Rizzo FA et al. Carbon and nitrogen, humic and labile fractions in soil under clonal Eucalyptus stands from cerrado. European Journal of Forest Research 2024; 143(3): 1-14. Available from: https://doi.org/10.1007/s10342-024-01669-x

Poubel DDS; Garcia RA; Latorraca JVDF; Carvalho AMD. Estrutura anatômica e propriedades físicas da madeira de Eucalyptus pellita F. Muell. Floresta e Ambiente 2011; 18(2), 117-126. Available from: https://doi.org/10.4322/floram.2011.029 .

R Development Core Team. R software version 4.2.3. In. R Foundation for Statistical Computing 2023; Vienna, Austria; 2023. Available from: https://www.r-project.org/ .

Steiner C; Das KC; Garcia M; Förster B; Zech W. Charcoal and smoke extract stimulate the soil microbial community in a highly weathered xanthic Ferralsol. Pedobiologia 2008; 51(5-6), 359-366. Available from: https://doi.org/10.1016/j.pedobi.2007.08.002 .

Technical Association of the Pulp and Paper Industry. Acid – insoluble lignin in wood and pulp. TAPPI. Atlanta, EUA; 1999. Available from: https://imisrise.tappi.org/TAPPI/Products/01/T/0104T222.aspx .

Teixeira RS; Santos SFD; Christoforo AL; Payá J; Savastano JrH; Lahr FR. Impact of content and length of curauá fibers on mechanical behavior of extruded cementitious composites: Analysis of variance. Cement and Concrete Composites 2019; 102, 134-144. Available from: https://doi.org/10.1016/j.cemconcomp.2019.04.022 .

Venega RS, Silva RC, Sousa TO, Saraiva KF, Colares CJG, Loiola PL, et al. Energy Quality of Wood and Charcoal from the Stem and Root of Eucalyptus spp. Floresta Ambient 2023; 30(1): e20220031. Available from: https://doi.org/10.1590/2179-8087-FLORAM-2022-0031 .

Wastowski AD. Química da madeira. 1rd ed. Editora Interciência; 2018. Available from: https://www.researchgate.net/publication/326620483_Quimica_da_Madeira_Chemistry_of_Wood .

Wickham H. Data analysis. Ggplot2 package. Springer: New York, EUA; 2016. Available from: https://link.springer.com/book/10.1007/978-3-319-24277-4 .

Yildiz ÜC, Kiliç C, Gürgen A, Yildiz S. Possibility of using lichen and mistletoe extracts as potential natural wood preservative. Maderas. Ciencia y tecnología 2020; 22(2): 179-188. Available from: http://dx.doi.org/10.4067/S0718-221X2020005000204 .

Zhu R; Wang B; Zhong X; Wang L; Zhang Q; Xie H; Feng Y. Biochar and pyroligneous acid contributed to the sustainable reduction of ammonia emissions: From compost process to soil application. Journal of Hazardous Materials 2025; 489, 137677. Available from: https://doi.org/10.1016/j.jhazmat.2025.137677 .
 


Submitted date:
02/07/2025

Accepted date:
04/27/2025

689f1cd6a95395101b607993 floram Articles

FLORAM

Share this page
Page Sections