Floresta e Ambiente
http://www.floram.periodikos.com.br/article/doi/10.1590/2179-8087-FLORAM-2024-0042
Floresta e Ambiente
Original Article Forest Products Science and Tecnology

Wood Basic Density Variation Along Pinus occidentalis , Swartz, and Pinus caribaea , var. Caribaea, Morelet tree stems

Santiago Wigberto Bueno-López; Luis René Caraballo-Rojas; Juan Gilverto Torres-Herrera

Downloads: 0
Views: 265

Abstract

Abstract: Pinus occidentalis and Pinus caribaea are important conifers in La Sierra, Dominican Republic, used to recover degraded ecosystems. A study on their wood density obtained from stem discs at three relative heights (RH) as a composite sample showed that wood density increased with age class for both species and decreased with RH in the stem. A mixed repeated measures analysis of variance, followed by a regression approach to the effects model, indicates a statistically significant interaction between species, age class (AC), RH, [ , P ≤0.000, partial =0.814]. Simple bidirectional interactions between factors and all simple main effects are statistically significant. Basic density (BD) increased with age class for both species and decreased with RH in the stem. Pinus occidentalis had a 14.6% higher average wood density and is endemic. Therefore, efforts must be made to provide better silvicultural practices so that its population continues to be a viable asset.

Keywords

analysis of variance, conventional densitometry, repeated measures analysis, wood physical properties

References

Beets PN, Kimberley MO, Oliver GR, Pearce SH. Predicting wood density of growth increments of Douglas-fir stands in New Zealand. New Zealand Journal of Forestry Science 2020; 48:1-11. https://doi.org/10.1186/s40490-018-0112-z .

Billard A, Bauer R, Mothe F, Colin F, Deleuze C, Longuetaud F. Vertical variations in wood basic density for two softwood species. Eur. J. Forest Res. 2021; 140:1401–1416. https://doi.org/10.1007/s10342-021-01402-y .

Bonferroni CE. Teoria statistica delle classi e calcolo delle probabilità. 1st ed. Pubblicazioni del R Istituto Superiore di Scienze Economiche e Commerciali di Firenze; 1936.

Bueno SW, Bevilacqua E. Diameter growth prediction for individual Pinus occidentalis Sw. trees. iForest-Biogeosciences and Forestry 2013; 6:209-216. https://doi.org/10.3832/ifor0843-006 .

Dahlen J, Auty D, Eberhardt TL. Models for predicting specific gravity and ring width for Loblolly Pine from intensively managed plantations, and implications for wood utilization. Forests 2018; 9:292. https://doi.org/10.3390/f9060292 .

Demol M, Calders K, Krishna-Moorthy SM, van den Bulcke J, Verbeeck H, Gielen B. Consequences of vertical basic wood density variation on the estimation of aboveground biomass with terrestrial laser scanning. Trees 2021; 35:671-684. https://doi.org/10.1007/s00468-020-02067-7 .

Deng X, Zhang L, Lei P, Xiang W, Yan W. Variations of wood basic density with tree age and social classes in the axial direction within Pinus massoniana stems in Southern China. Annals of Forest Science 2014; https://doi.org/10.1007/s13595-013-0356-y .

Djomo AN, Ngoukwa G, Zapfack L, Chimi CD. Variation of wood density in tropical rainforest trees. Forests 2017; 4:2. https://doi.org/10.18488/journal.101.2017.42.16.26 .

Dobner M, Huss J, Tomazello-Filho M. Wood density of Loblolly Pine trees as affected by crown thinnings and harvest age in southern Brazil. Wood Science Technology 2018; 52:465-485. https://doi.org/10.1007/s00226-017-0983-9 .

Farias HLS, Pequeno PACL, Silva WR, Melo VF, Carvalho LCDS, Perdiz RDO, et al. Amazon forest biomass: intra- and interspecific variability in wood density drive divergences in Brazil’s far north. iForest-Biogeosciences and Forestry 2023; 16:95-104. https://doi.org/10.3832/ifor4137-016 .

Rodríguez-Gamir J, Xue J, Meason DF, Clearwater M, Clinton PW, Domec JC. Interclonal variation, coordination, and trade-offs between hydraulic conductance and gas exchange in Pinus radiata: consequences on plant growth and wood density, Journal of Experimental Botany 2021; 72(7):2419-2433. https://doi.org/10.1093/jxb/eraa587 .

Gonçalves-Rocha SM, Baptista-Vidaurre G, Macedo-Pezzopane JE, Félix-Almeida MN, Lorenzato-Carneiro R, Camargo-Campoe O, et al. Influence of climatic variations on production, biomass and density of wood in eucalyptus clones of different species. Forest Ecology and Management 2020; 473:118290. https://doi.org/10.1016/j.foreco.2020.118290 .

Guo P, Zhao X, Wang X, Feng Q, Li X, Tan Y. Wood Density and Carbon Concentration Jointly Drive Wood Carbon Density of Five Rosaceae Tree Species. Forests 2024; 15:1102. https://doi.org/10.3390/f15071102 .

Hevia A, Campelo F, Chambel R, Vieira J, Alía R. Which matters more for wood traits in Pinus halepensis Mill., provenance or climate? Annals of Forest Science 2020; 77:55-67. https://doi.org/10.1007/s13595-020-00956-y .

Horácek P, Fajstavr M, Stojanović M. The variability of wood density and compression strength of Norway spruce ( Picea abies /L./Karst.) within the stem. Beskydy 2017; 10:17-26. http://dx.doi.org/10.11118/beskyd201710010017 .

Hubbel KL, Ross-Davis AL, Pinto JR, Burney OT, Davis AS. Toward Sustainable Cultivation of Pinus occidentalis Swartz in Haiti: Effects of Alternative Growing Media and Containers on Seedling Growth and Foliar Chemistry. Forests 2018; 9:14. http://dx.doi.org/10.3390/f9070422 .

IBM CORP. IBM SPSS Statistics for Windows, Version 25.0. 2017 Armonk, N.Y. IBM Corp.

Jakubowski M, Dobroczynski M. Allocation of wood density in European Oak (Quercus robur L.) trees grown under a canopy of Scots Pine. Forests 2021; 12:712. https://doi.org/10.3390/f12060712 .

Kimberley MO, Moore JR, Dungey HS. Modelling the effects of genetic improvement on radiata pine wood density. New Zealand Journal of Forestry Science 2016; 46:8-21. https://doi.org/10.1186/s40490-016-0064-0 .

Klotz UW, Torres JG. Comportamiento del Pinus occidentalis Sw. en la Zona de Moncion, La Celestina y San José de las Matas. 1st ed. Plan Sierra y Servicio de Cooperación Social Tecnica (DED). San José de las Matas; 1991.

Kutner MH, Nachtsheim CJ, Neter JK, Li W. Applied Linear Regression Models. 5th Edition. McGraw-Hill/Irwin, The McGraw-Hill Companies, Inc., 1221 Avenue of the Americas, New York; 2005.

Levene H. Robust tests for equality of variances. In Ingram Olkin; Harold Hotelling; et al. (eds.). Contributions to Probability and Statistics: Essays in Honor of Harold Hotelling. Stanford University Press; 1960. https://www.scirp.org/reference/referencespapers?referenceid=2488563 .

Li Y, Ding X, Jiang J, Luan Q. Inheritance and correlation analysis of pulpwood properties, wood density, and growth traits of Slash Pine. Forests 2020; 9:493. https://doi.org/10.3390/f11050493 .

Li F, Qian H, Sardans J, Amishev DY, Wang Z, Zhang C, et al. Evolutionary history shapes variation of wood density of tree species across the world. Plant Diversity 2024; 46(3):283-293. https://doi.org/10.1016/j.pld.2024.04.002 .

Lima-Costa SE, do Santos RC, Baptista-Vidaurre G, Oliveira-Castro RV, Gonçalves-Rocha SM, Carneiro RL, et al. The effects of contrasting environments on the basic density and mean annual increment of wood from eucalyptus clones. Forest Ecology and Management 2020; 458:117807. https://doi.org/10.1016/j.foreco.2019.117807 .

Mauchly JW. Significance Test for Sphericity of a Normal n-Variate Distribution. The Annals of Mathematical Statistics 1940; 11:204-209. https://doi.org/10.1214/aoms/1177731915 .

McCulloh KA, Domec JC, Johnson DM, Smith DD, Meinzer FC. A dynamic yet vulnerable pipeline: integration and coordination of hydraulic traits across whole plants. Plant, Cell & Environment 2019; 42:2789-2807. https://doi.org/10.1111/pce.13607 .

MacFarlane DW. Functional Relationships Between Branch and Stem Wood Density for Temperate Tree Species in North America. Front. For. Glob. Change 2020; 3:63. https://doi.org/10.3389/ffgc.2020.00063 .

Minini D, da Silva JGM, Paula RR, Gonçalves-Rocha SM, Silveira-Filhod TB, Gaui TD, et al. Insights about wood density in Atlantic Forest ecosystems: spatial variability and alternative measurement. Can. J. For. Res. 2022; 52:1212-1223. dx.doi.org/10.1139/cjfr-2022-0061.

Morgado-González G, Gómez-Guerrero A, Villanueva-Díaz J, Terrazas T, Ramírez-Herrera C, Hernández de la Rosa P. Densidad de la madera de Pinus hartwegii Lind. en dos niveles altitudinales y de exposición. Agrociencia 2019; 53:645-660. https://www.researchgate.net/publication/334191248 .

Moreno-Fernández D, Hevia A, Majada J, Cañellas I. Do Common Silvicultural Treatments Affect Wood Density of Mediterranean Montane Pines? Forests 2018; 9:80. https://doi.org/10.3390/f9020080 .

Oliveira GMV, de Mello JM, de Mello CR, Soares-Scolforo JR, Pereira-Miguel E, Campos-Monteiro E. Behavior of wood basic density according to environmental variables. J. For. Res. 2022; 33:497-505. https://doi.org/10.1007/s11676-021-01372-2 .

Ortega-Rodríguez DR, Tomazello-Filho M. Clues to wood quality and production from analyzing ring width and density variabilities of fertilized Pinus taeda trees. New Forests 2018; 50:821-843. https://doi.org/10.1007/s11056-018-09702-9 .

Pompa‑Garcia M, Hevia A, Camarero J. Minimum and maximum wood density as proxies of water availability in two Mexican pine species coexisting in a seasonally dry area. Trees 2021; 35:597-607. https://doi.org/10.1007/s00468-020-02062-y .

Romero FMB, de Nazaré Oliveira Novais, T., Jacovine LAG, Bezerra EB, de Castro Lopes RB, de Holanda JS, et al. Wood Basic Density in Large Trees: Impacts on Biomass Estimates in the Southwestern Brazilian Amazon. Forests 2024; 15:734. https://doi.org/10.3390/f15050734 .

Schimleck L, Antony F, Dahlen J, Moore J. Wood and Fiber Quality of Plantation-Grown Conifers: A Summary of Research with an Emphasis on Loblolly and Radiata Pine. Forests 2018; 9:298. https://doi.org/10.3390/f9060298 .

Shapiro SS, Wilk MB. An analysis of variance test for normality (complete samples). Biometrika 1965; 52:591-611. http://links.jstor.org/sici?sici=0006444%28196512%2952%3A3%2F4%3C591%3AAAOVTF%3E2.0.CO%3B2-B ).

Szaban J, Jelonek T, Okinczyk A, Kowalkowski W. Results of a 57-year-long research on variability of wood density of the Scots Pine (Pinus sylvestris L.) from different provenances in Poland. Forests 2023; 14:480. https://doi.org/10.3390/f14030480 .

Tomczak A, Jelonek T, Pazdrowski W, Grzywinski W, Mania P, Tomczak K. The effects of wind exposure on Scots Pine Trees: Within-Stem Variability of Wood Density and Mechanical Properties. Forests 2023; 11:1095. https://doi.org/10.3390/f11101095 .

Topanotti LR, Vaz DR, Chaves-Carvalho SP, Rios P, Tomazello‑Filho M, Dobner M, et al. Growth and wood density of Pinus taeda L. as affected by shelterwood harvest in a two‑aged stand in Southern Brazil. European Journal of Forest Research 2021; https://doi.org/10.1007/s10342-021-01372-1 .

Vaughan D, Auty D, Kolb TE, Meador AJS, Mackes KH, Dahlen J, et al. Climate has a larger effect than stand basal area on wood density in Pinus ponderosa var. scopulorum in the southwestern USA. Annals of Forest Science 2019; 76:85-97. https://doi.org/10.1007/s13595-019-0869-0 .

Venega RdS, da Silva RC, Sousa TO, Ferreira-Saraiva K, Gomes-Colares CJ, Loiola PL, et al. Energy quality of wood and charcoal from the stem and root of Eucalyptus spp. Floresta e Ambiente 2023; 30(1):e20220031. https://doi.org/10.1590/2179-8087-floram-2022-0031 .

Zobel BJ, Jett JB. The Importance of Wood Density (Specific Gravity) and Its Component Parts. In: Genetics of Wood Production. Springer Series in Wood Science. Springer, Berlin, Heidelberg; 1995. https://doi.org/10.1007/978-3-642-79514-5_4 ]
 


Submitted date:
07/31/2024

Accepted date:
12/04/2024

67a9f3d2a9539574ed1f1988 floram Articles

FLORAM

Share this page
Page Sections