RESISTÊNCIA DAS MADEIRAS DE AROEIRA (Myracrodruon urundeuva), CÁSSIA (SENNA SIAMEA) E IPÊ (Tabebuia impetiginosa) A FUNGOS E CUPINS XILÓFAGOS, EM CONDIÇÕES DE LABORATÓRIO

Juarez Benigno Paes¹ Verlândia de Medeiros Morais² Carlos Roberto de Lima¹

RESUMO

valiou-se, em laboratório, a resistência das madeiras de aroeira (*Myracrodruon urundeuva*), cássia (*Senna siamea*) e ipê (*Tabebuia impetiginosa*) a fungo e cupins xilófagos. Amostras de 2,54 x 2,00 x 1,00 cm (fungos) e de 2,54 x 2,00 x 0,64 cm (cupins) foram retiradas em quatro posições na direção medula-casca e expostas à ação dos fungos *Postia placenta* e *Neolentinus lepideus* e de cupins *Nasutitermes corniger*. A resistência natural das madeiras não esteve associada à massa específica e nem à concentração de extrativos solúveis em água quente. Dentre as espécies estudadas, a aroeira teve o cerne mais resistente e o alburno menos resistente.

Palavras-chaves: Biodeterioração da madeira, fungos, cupins

ABSTRACT

RESISTANCE OF Myracrodruon urundeuva, Senna siamea AND Tabebuia impetiginosa WOODS TO WOOD-DESTROYING FUNGI AND TERMITES, UNDER LABORATORY CONDITIONS

The resistance of *Myracrodruon urundeuva*, *Senna siamea* and *Tabebuia impetiginosa* woods to fungi and termites was evaluated, under laboratory condition. Samples measuring 2.54 x 2.00 x 1.00 cm (fungi) and 2.54 x 2.00 x 0.64 cm (termites) were obtained from four positions in pith to bark direction and exposed to action of *Postia placenta* and *Neolentinus lepideus* fungi and *Nasutitermes corniger* termites. The wood natural resistance to xylophages was not affected by wood specific gravity or by content of extracted substance in hot water. The heartwood of *M. urundeuva* was more resistant than sapwood among the tested woods.

Key words: Wood deterioration, fungi, termites

INTRODUÇÃO

A madeira apresenta uma gama de utilização nos meios rural e urbano. Porém, em virtude da sua

estrutura e constituição química, é passível de sofrer o ataque de vários organismos, sendo os fungos e os térmitas (cupins) os responsáveis pelos maiores danos (Hunt & Garratt, 1967;

¹ Departamento de Engenharia Florestal da UFPB - Campus VII - 58700-970 - Patos - PB. E-mail: jbp2@uol.com.br e crlima16@bol.com.br.;

² Acadêmica de Engenharia Florestal. Bolsista PIBIC/UFPB/CNPq. E-mail: verlandiam@bol.com.br. Recebido para publicação em 2002.

Cavalcante, 1982; Carballeira Lopez & Milano, 1986).

A resistência à deterioração tem sido atribuída principalmente, à presença de certas substâncias presentes no lenho, tais como taninos e outras substâncias fenólicas complexas, que são tóxicas aos organismos xilófagos (Hunt & Garratt, 1967; Findlay, 1985; Lelles & Rezende, 1986; Oliveira et al., 1986).

De modo geral, há grande diferença na resistência natural entre as madeiras do cerne interno e externo, como observado por Paes & Vital (2000) para as madeiras de *Eucalyptus saligna* e *E. urophylla*. Em quase todas as espécies em que tais diferenças ocorrem, a porção interna do cerne, formada pela planta jovem, é menos resistente à decomposição que a externa, região de transição com o alburno, formada pela planta adulta. Porém, nem todas as espécies apresentam este padrão, e entre as mais duráveis, a madeira próxima à medula é tão resistente quanto àquela da região externa do cerne. Por outro lado, a madeira de alburno é, reconhe-cidamente susceptível à deterioração biológica (Findlay, 1985).

Assim, o conhecimento da resistência natural da madeira é de suma importância na recomendação de sua utilização, bem como para evitar gastos desnecessários com a reposição de peças deterioradas e reduzir os impactos sobre as florestas remanescentes.

Assim sendo, realizou-se esta pesquisa com o objetivo de avaliar a resistência das madeiras de aroeira (*Myracrodruon urundeuva*), cássia (*Senna siamea*) e ipê (*Tabebuia impetiginosa*) a fungos e a cupins xilófagos, em condições de laboratório.

MATERIAL E MÉTODOS

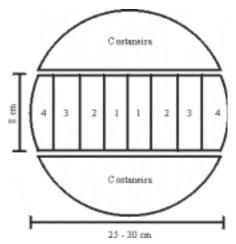
Espécies estudadas e local de origem

Empregaram-se as madeiras de aroeira (*Myracrodruon urundeuva*), cássia (*Senna siamea*), espécie exótica aclimatada na Região Nordeste, normalmente empregada na arborização urbana e ipê (*Tabebuia impetiginosa*). Estas madei-

ras, com exceção da cássia que foi abatida no Campus VII da UFPB - Patos – PB, foram adquiridas, em forma de toras, em serrarias na cidade de Patos – PB.

Das toras selecionadas, que apresentavam diâmetro entre 25 e 30 cm, retiraram da região intermediária ao DAP, toretes de aproximadamente 50 cm de comprimento.

Desdobro da madeira e confecção dos corpos-deprova


Dos toretes obtidos, retiram-se, com o auxílio de uma serra de fita, duas costaneiras, que foram descartadas. Os pranchões obtidos, de aproximadamente 8 cm de espessura, contendo o cerne e o alburno intactos, foram subdivididos em oito seções radiais, diametralmente opostas e de mesma dimensão, as quais foram agrupadas duas a duas e identificadas conforme sua posição em relação à distância medula-casca (1 - interna, 2 - medianainterna, 3 - mediana-externa e 4 - externa), conforme demonstrado na Figura 1. Deste modo, representouse toda a madeira, e não apenas o cerne como o indicado por Willeitner (1984) e ASTM D - 2017 (1994).

Para homogeneizar as dimensões das amostras na direção radial, seções foram ajustadas para 2,0 cm e, posteriormente transformadas em corpos-deprova de 2,54 x 2,00 x 1,00 cm (fungos) e de 2,54 x 2,00 x 0,64 cm (cupins), com a maior dimensão no sentido das fibras. A seguir, selecionaram seis e oito amostras isentas de defeitos, para os ensaios com fungos e cupins, respectivamente.

Para a montagem dos ensaios, secaram-se os corpos-de-prova a 103 ± 2 °C até massa constante. Mediram-se a massa e o volume de cada amostra, como o recomendado pela ASTM D - 1413 (1994) e os valores foram utilizados para calcular a massa específica da madeira e a perda de massa causada pelos organismos xilófagos.

Resistência natural a fungos xilófagos

O ensaio foi montado, conforme o indicado pela ASTM D - 2017 (1994), em frascos de 600mL, que

Figura 1. Obtenção das seções para a confecção dos corpos-de-prova.

Figure 1. Obtaining of pieces for test samples confection.

foram preenchidos com 350g de solo com pH 6,2 e capacidade de retenção de água de 27%. Depois do preenchimento dos frascos, adicionaram-se 105mL de água destilada e dois alimentadores de *Pinus* sp. por frasco. Os frascos foram esterilizados a 120 ± 1 °C durante uma hora e, depois de esfriarem, adicionaram-se os fungos *Postia placenta* e *Neolentinus lepideus*.

Após o desenvolvimento dos fungos, os corpos-de-prova esterilizados sob as condições descritas, foram adicionados à razão de quatro amostras por frasco (uma para cada posição na direção medula-casca no tronco).

O ensaio foi conduzido em sala climatizada (28 \pm 2 °C e 75 \pm 5% de umidade relativa), e mantido nestas condições até que amostras confeccionadas de *Pinus* sp. apresentassem perda de massa ³ 60%. Decorrido esse período, os frascos foram abertos e os corpos-de-prova secos e a perda de massa avaliada.

A perda de massa foi avaliada com base na massa anidra dos corpos-de-prova, tomada antes e após o ensaio. Os valores obtidos foram subtraídos de amostras submetidas às mesmas condições de ensaio, porém sem a presença dos fungos.

Para avaliação do ensaio, comparou-se a perda de massa das madeiras com os valores apresentados pela ASTM D - 2017 (1994) (Tabela 1).

Resistência natural a cupins xilófagos

O ensaio foi executado segundo a norma ASTM D-3345 (1994), com alguns ajustes recomendados por Paes (1997). Assim, o ensaio foi montado em frascos de 600 mL, preenchidos com 200 g de areia e a umidade corrigida para 75% da capacidade de retenção, pela adição de 38 mL de água destilada. Em cada frasco, foram adicionados um corpo-deprova e 1 ± 0.05 g de cupins subterrâneos *Nasutitermes corniger*. Após a adição dos cupins, os frascos foram, frouxamente tampados, para permitir a circulação de ar. O ensaio permaneceu em sala climatizada (28 ±2 °C e 75 ±5 % de umidade relativa), por quatro semanas.

Para avaliar a resistência das madeiras, foram computados a perda de massa, o desgaste (Tabela 2), a mortalidade dos cupins (Tabela 3) e o número de dias para a morte dos cupins de cada frasco. A exemplo do ensaio com fungos, a perda de massa foi corrigida.

Determinação do teor de extrativos em água quente

As amostras não selecionadas para os ensaios foram transformadas em cavacos e convertidas em serragem em moinho do tipo Willey. A serragem obtida foi peneirada e utilizou-se a que passou pela peneira de 40 meshes e ficou retida na de 60 meshes.

Para a determinação dos extrativos, seguiramse as recomendações da ASTM D-1110 (1994), que padroniza o teste de solubilidade da madeira em água quente.

Análise dos resultados

Para avaliar a resistência das madeiras aos fungos *Postia placenta* e *Neolentinus lepideus*, além dos valores de classes de resistência (Tabela 1) foi empregado o delineamento inteiramente casualizado, com arranjo fatorial, em que foram analisados os seguintes fatores: espécies de madeira, com três fatores; posição na direção medula-casca,

Tabela 1. Classes de resistência da madeira a fungos xilófagos.

Table 1. Wood resistance classes to wood-destroying fungi.

Classes de Resistência	Perda de Massa (%)	Massa Residual (%)	
Muito Resistente	0 - 10	90 - 100	
Resistente	11 - 24	76 - 89	
Resistência Moderada	25 - 44	56 - 75	
Não - Resistente	≥ 45	≤ 55	

com quatro fatores; e a interação entre os fatores.

Para os cupins, por causa da subjetividade dos dados de desgastes (Tabela 2) e da variação dos dados de mortalidade (Tabela 3) e do número de dias para a morte dos cupins, optou-se pela análise estatística da perda de massa (delineamento já descrito), e pela utilização das informações do desgaste e da mortalidade para auxiliarem nas interpretações dos resultados.

Também foram utilizados com esse objetivo os valores médios da massa específica da madeira e do teor de substâncias extraídas em água quente.

Para possibilitar as análises, os dados de perda de massa (%) foram transformados em arcsen [raiz quadrada (perda de massa/100)]. Esta transformação, sugerida por Steel & Torrie (1980), foi necessária para permitir a homogeneidade das variâncias. Na análise e avaliação dos ensaios foi empregado o teste de Tukey, em nível de 5% de probabilidade, para as fontes de variação detectadas como significativas pelo teste de F.

RESULTADOS E DISCUSSÃO

Resistência natural a fungos xilófagos

Os valores médios da massa específica da madeira (g/cm³), do teor de extrativos solúveis em água quente, da perda de massa (%) causada pelo ataque dos fungos *Postia placenta* e *Neolentinus lepideus* e a classificação da resistência das madeiras (ASTM D - 2017, 1994) encontram-se na Tabela

4.

Pela análise dos dados, nota-se que as madeiras foram classificadas como resistente ou muito resistente aos fungos. Nota-se ainda, que aparentemente, não houve uma boa relação entre a quantidade de substância extraídas em água quente e a resistência natural da madeira, pois a aroeira

Tabela 2. Avaliação do desgaste provocado pelos cupins nos corpos-de-prova.

Table 2. Evaluation of waste caused by termites test samples.

Tipos de Desgaste	Nota	
Sadio, permitindo escarificações superficiais	10	
Ataque superficial	9	
Ataque moderado, havendo penetração	7	
Ataque intensivo	4	
Falha, havendo ruptura dos corpos-de-prova	0	

Tabela 3. Avaliação da resistência a cupins pela porcentagem de mortalidade.

Table 3. Resistence evaluation topercentage of mortality.

Avaliação da Resistência	Mortalidade (%)
]
Baixa	0 - 33
Moderada	34 - 66
Alta	67 - 99
Total	100

(posições 1, 2 e 3) e cássia (posições 1 e 2). com altos teores de extrativos, foram tão resistente quanto o ipê, com baixos teores. Assim, a resistência das madeiras pode estar relacionada a outros tipos de substâncias, que não foram solúveis em água quente.

Observação semelhante é feita com relação à massa específica, em que a cássia, madeira de menor massa, foi semelhante às madeiras de arocira e ipê. Os resultados obtidos estão em conformidade com Scheffer (1973) e Panshin & De Zeeuw (1980). Estes autores citam que madeiras mais densas não são necessariamente, as mais duráveis e que a resistência natural está associada à quantidade e à classe de extrativos tóxicos presentes no lenho.

A análise de variância da perda de massa (%) revelou resultados significativos pelo teste de F, para as madeiras, posições na direção medula-casca e para a interação entre estes fatores. O efeito da interação foi desdobrado e analisado pelo teste de Tukey (Tabela 5).

A influência da posição, na degradação causada

pelos fungos, não foi significativa entre as posições analisadas para a madeira de cássia. No entanto, para a aroeira e ipê, houve diferença significativa na degradação entre as posições. Para estas madeiras, os fungos atacaram o alburno (posição 4) com mais intensidade que o cerne (posições 1, 2 e 3).

O efeito da espécie não revelou diferenças significativas na resistência das madeiras para as posições 1, 2 e 3, para ambos fungos testados. Porém, para a posição 4 (alburno), a cássia, quando submetida à ação do *Postia placenta*, foi mais resistente que aroeira e ipê. No entanto, o *Neolentinus lepideus* atacou a madeira de alburno das três espécies testadas com a mesma intensidade.

Resistência natural da madeira a cupins xilófagos

Os valores médios da perda de massa (%), da mortalidade (%), do tempo (dias) para a morte dos cupins e do desgaste provocado nas madeiras, encontram-se na Tabela 6. Observa-se nesta tabela, que a resistência natural das madeiras variou com a

Tabela 4. Valores médios da massa específica (g/cm³). do teor de extrativos (%), da perda de massa (%) e da classificação da madeira.

Table 4. Average values of especific gravity (g/cm3), of content of extractives (%), of weight loss (%) and of wood classification.

Madeiras	Posição no	Massa Específica	Extrativo em H ₂ O Ouente	Perda de Massa (ASTM D	Média da Perda d Massa (%) e	
Estudadas	Tronco	(g/cm ³)	(%)	Postia placenta	Neolentinus lepideus	Classificação
	1-Interna	1,11	17,61	0,68 - MR	0,29 - MR	0,49 - MR
1-Aroeira	2-Med.Int	1,09	17,23	0,25 - MR	0,31 - MR	0,28 - MR
	3-Med.Ex	1,09	18,73	0,99 - MR	0,44 - MR	0,72 - MR
	4-Externa	0,94	8,05	16,55 - R	8,16 - MR	12,36 - R
	1-Interna	0,67	12,73	2,51 - MR	0.57 - MR	1,54 - MR
2-Cássia	2-Med.Int	0,68	11.24	1,70 - MR	1,94 - MR	1.82 - MR
	3-Med.Ex	0,68	7.61	2,17 - MR	2,55 - MR	2,36 - MR
	4-Externa	0.68	5,43	1,87 - MR	2,76 - MR	2,32 - MR
	1-Interna	1.01	7.91	0,44 - MR	0,96 - MR	0,70 - MR
3-Ipê	2-Med.Int	0.96	7.71	1.13 - MR	0,77 - MR	0,95 - MR
- r	3-Med.Ex	0.95	7,79	0,49 - MR	0,83 -MR	0,66 - MR
	4-Externa	0,90	7,58	9.29 - MR	3,72 - MR	6,51 - MR

Em que: MR - Muito Resistente: R - Resistente.

Table 5. Multiple comparisons among averages, by the Tukey's test. for weight loss (%) caused by fungi.

	-	Efe	eito da Posição na Ma	deira na Resistê	ncia aos Fungos			
	1 -	Aroeira			2 –	Cássia		
Postic	ı placenta	Neolen	tinus lepideus	Postia placenta		Neolentinus lepideus		
Posições	Médias Verdadeiras	Posições Médias Verdadeiras		Médias Verdadeiras Posições Médias Verdadeiras		Posições	Médias Verdadeiras	
4	16,55 a	4	8,16 a	1	2,51 a	4	2,76 a	
3	0,99 b	3	0,44 b	3	2,17 a	3	2,55 a	
1	0.68 b	2	0,31 b	4	1,87 a	2	1,94 a	
2	0,25 b	1	0,29 b	2	1,70 a	l	0,57 a	
			3	– Ipê				
	Postic	a placenta			Neolenti	nus lepideus		
Posições		Média	s Verdadeiras	Posições		Médias Verdadeiras		
4			9,29 a	4		3,72 a		
	2		1,13 b		1		0,96 Ь	
3		0,49 b		3		0,83 b		
1		0,44 b		2		0	0,77 b	
		Efeito da Ma	deira na Resistência	Natural aos Fun	gos para cada Posi	ição		
Posição 1 - Interna					Posição 2 – N	/lediana-Interna		
Po	stia placenta	Neole	entinus lepideus	Postia placenta		Neolentinus lepideus		
Madeira	s Médias Verdadeiras	Madeira	s Médias Verdadeiras	Madeiras	Médias Verdadeiras	Madeiras	Médias Verdadeira	
2 - Cássia	2,51 a	3 - Ipê	0,96 a	2 - Cássia	1.70 a	2 - Cássia	1,94 a	
I - Aroeira	0,68 a	2 - Cássia	0,57 a	3 - Ipê	1,13 a	3 - Ipê	0,77 a	
3 - Ipê	0,44 a	l - Aroeira	0,29 a	1 - Aroeira	0,25 a	1 - Aroeira	0,31 a	
Posição 3 – Mediana-Externa			Posição 4 Externa					
Postia placenta		Neole	entinus lepideus	Postia placenta		Neolentinus lepideus		
Madeira	s Médias Verdadeiras	Madeira	s Médias Verdadeiras	Madeiras	Médias Verdadeiras	Madeiras	Médias Verdadeira	
	2.17 a	2 - Cássia	2.55 a	1 - Aroeira	16.55 a	I - Aroeira	8,16 a	
2 - Cássia	∠,17 a	z - Cassia						
2 - Cássia 1 - Aroeira	0,99 a	3 - Ipê	0,83 a	3 - Ipê	9,29 a 1,87 b	3 - Ipê 2 - Cássia	3,72 a 2,76 a	

As médias seguidas pela mesma letra não diferem entre si, em nível de 5% de probabilidade.

Tabela 6. Valores médios da perda de massa (%), da mortalidade (%), do tempo (dias) para a mortalidade dos cupins e do desgaste causado nos corpos-de-prova.

Table 5. Average values of weight loss (%), of mortaly (%), of time (days) to mortality of termites and of waste caused on test samples.

Madeiras	Posições	Perda de Massa (%)	Mortalidade (%)	Tempo (Dias)	Desgaste (Notas)
	1 - Interna	1,18	100	12,9	10
1 – Aroeira 2 – M 3 – M	2 - Med. Int.	1,55	100	12,1	10
	3 - Med. Int.	2,17	100	12,9	10
	4 - Externa	6,31	94,0	21,4	9,25
	1 - Interna	2,31	100	10,4	10
2 67 .	2 - Med. Int.	1,75	100	9,8	10
2 – Cássia		1,73	100	9,4	10
	3 - Med. Ext. 4 - Externa	1,79	100	10,5	10
		0,89	100	12,4	10
	1 - Interna	0,47	100	12,3	10
3 – Ipê	2 - Med. Int.	0,30	100	12,7	10
	3 - Med. Ext. 4 - Externa	2,20	97,0	21.0	9.17

espécie testada e com a posição na direção medulacasca.

Para a perda de massa, verificaram que as partes internas (cerne) da aroeira e ipê foram menos atacadas pelos cupins que a parte externa (alburno). A cássia não apresentou grande discrepância, em termos de resistência, para as posições analisadas.

A mortalidade ficou entre 94,0 e 100%, para todas as madeiras, sendo classificadas como altamente resistentes aos cupins utilizados.

Notou-se uma grande variação no número de dias para a morte dos cupins. De modo geral, houve uma maior sobrevivência no alburno da aroeira e do ipê, com média de 14,83 e 14,60 dias, respectivamente. A madeira de cássia apresentou média de 10,01dias. Este é um dos fatores utilizados por vários autores, dentre eles Jankowsky (1986) e Paes (1997), para avaliar a eficiência de tratamentos preservativos, pois quando os cupins morrem rapidamente, significa que o produto preservativo ou os extrativos tóxicos presentes no lenho são letais aos insetos. Assim, dentre as madeiras testadas, a cássia

foi a mais resistente aos cupins. Por outro lado, com relação ao desgaste, as madeiras sofreram ataque superficial (alburno de aroeira e de ipê) ou não foram atacadas.

A exemplo do ensaio com fungos, possivelmente não houve relação entre o conteúdo de extrativos em água quente e a resistência da madeira. O ipê, contendo baixos teores de extrativos, apresentou resistência semelhante à aroeira e cássia. A madeira de cássia. com maiores teores de extrativos nas posições 1 e 2, que os das posições 3 e 4, apresentou pequena disparidade em relação à perda de massa. No entanto, para a aroeira, provavelmente haja uma relação significativa entre o conteúdo de extrativos e a resistência da madeira. Neste caso, o cerne, contendo alto teor de extrativo, teve resistência superior ao alburno, com baixo teor. Da mesma forma, talvez não haja uma relação estreita entre a massa específica e a resistência natural. Uma vez que, a cássia teve resistência semelhante à aroeira e ao ipê.

Em virtude dos dados de perda de massa serem

Tabela 7. Comparações múltiplas entre médias, pelo teste de Tukey, para a perda de massa (%) provocada pelos cupins nas madeiras estudas.

Table 7. Multiple comparison among averages, by the Tukey's test, for weigth loss (%) caused by termites on studied woods.

Efeito da Posição na Madeira na Resistência a Cupins para cada Espécie							
1 -	- Aroeira	2 - Cássia			3 – Ipê		
Posições	Médias Verdadeiras	Posições	Médias Verdadeiras	Posições	Médias Verdadeira		
4	6,31 a	<u>l</u>	2,31 a	4	2,20 a		
3	2,17 b	4	1,79 a	1	0.89 ab		
2	1,55 b	2	1.75 a	2	0,47 b		
1	1,18 b	3	1.73 a	3	0.30 b		

Efeito da Espécie na Resistência a C	Cupins para cada Posição na Madeira
--------------------------------------	-------------------------------------

Posição 1 - Interna Posição 2		Posição 2 –	 Med -Interna Posição 3 – 1 		Med -Externa	Posição 4	Posição 4 - Externa	
Madeiras	Médias Verdadeiras	Madeiras	Médias Verdadeiras	Madeiras	Médias Verdadeiras	Madeiras	Médias Verdadeiras	
2 - Cássia	2,31 a	2 - Cássia	1,75 a	1- Aroeira	2,17 a	1- Aroeira	6,31 a	
1 - Aroeira	1,18 a	2 - Arceira	1,55 a	2 - Cássia	1,73 ab	3 - Ipê	2,20 b	
3 - Ipê	0.89 a	3 - Ipê	0.47 b	3 - Ipê	0,30 b	2 - Cássia	1.79 b	

As médias seguidas pela mesma letra não diferem entre si, em nível de 5% de probabilidade.

menos subjetivos que os demais, eles foram analisados estatisticamente. A análise de variância acusou resultados significativos pelo teste de F, para a madeira, posição na peça e para a interação entre estes fatores. O efeito da interação foi desdobrado e analisado pelo testes de Tukey (Tabela 7).

As médias seguidas pela mesma letra não diferem entre si, em nível de 5% de probabilidade.

A análise do efeito da posição na resistência indicou que, com exceção da cássia, em que não houve diferença significativa entre as quatro posições analisadas, e do ipê, em que as posições 1 e 4 (cerne interno e alburno, respectivamente) foram semelhantes, a madeira de alburno (posição 4) foi mais deteriorada pelos cupins que a de cerne. Este resultado está em conformidade com o obtido por

Paes et al. (2001).

Para o efeito da espécie na resistência natural, o cerne interno (posição 1) não apresentou diferenças entre as madeiras. No entanto, para as posi-ções 2 e 3, a madeira de ipê foi a mais resistente. Para a posição 3, a cássia teve resistência intermediária entre a aroeira e o ipê. Já para a posição 4 (alburno), cássia e ipê foram mais resistentes que a aroeira. Assim, a baixa resistência oferecida pelo alburno da aroeira indica que não devem ser utilizadas peças roliças, provenientes de plantas jovens, em que o alburno represente uma boa proporção da peça. Paes et al. (2001) ao testarem nove madeiras do semi-árido brasileiro a cupins *Nasutitermes corniger*, em ensaio de preferência alimentar, constataram também a baixa resistência do alburno de aroeira.

CONCLUSÕES

A posição no tronco, exceto para a cássia, afetou a resistência da madeira, tendo o valor diminuído do cerne para o alburno.

Para as espécies estudadas, a quantidade de substâncias extraídas em água quente e a massa específica não apresentaram uma boa relação com a resistência natural das madeiras.

A cássia apresentou comportamento semelhante às madeiras de reconhecida resistência a xilófagos como o ipê e a aroeira, quando avaliadas em condições de laboratório, apresentando potencial para ser utilizada em obras diversas.

AGRADECIMENTOS

Os autores agradecem ao Prof. Reginaldo Constantino, Departamento de Zoologia da Universidade de Brasília, pela identificação dos cupins e ao CNPq, pela concessão de Bolsa de Iniciação Científica.

REFERÊNCIAS BIBLIOGRÁFICAS

AMERICAN SOCIETY FOR TESTING AND MATERIALS - ASTM D - 1110. Standard test methods for water solubility of wood. Annual Book of ASTM Standards, Philadelphia, v. 0410, p. 195-6, 1994.

AMERICAN SOCIETY FOR TESTING AND MATERIALS – ASTM D - 1413. Standard test method for wood preservatives by laboratory soilblock cultures. Annual Book of ASTM Standards, Philadelphia, v. 0410, p. 119-21, 1994.

AMERICAN SOCIETY FOR TESTING AND MATERIALS – ASTM D - 2017. Standard method of accelerated laboratory test of natural decay resistance of wood. Annual Book of ASTM Standards, Philadelphia, v. 0410, p.324-328, 1994.

AMERICAN SOCIETY FOR TESTING AND MATERIALS - ASTM D - 3345. Standard method for laboratory evaluation of wood and other cellulosic materials for resistance to termites. Annual Book of ASTM Standards, Philadelphia, v. 0410, p. 439-41, 1994.

CARBALLEIRA LOPEZ, G. A.; MILANO, S. Avaliação de durabilidade natural da madeira e de produtos usados na sua proteção. In: LEPAGE, E. S. (Coord.). **Manual de preservação da madeira**, São Paulo: IPT, 1986, v.2, p. 473-521.

CAVALCANTE, M. S. **Deterioração biológica e preservação de madeiras.** São Paulo IPT, 1982, 40p. (Pesquisa e Desenvolvimento, 8).

FINDLAY, W.P.K. The nature and durability of wood. In: FINDLAY, W.P.K. (Ed.). Preservation of timber in the tropics. Dordrecht: Martinus Nijhoff/ Dr. W. Junk Publishers, 1985. p. 1-13.

HUNT, G. M.; GARRATT, G. A. **Wood preservation.** 3. ed. New York: Mc Graw Hill, 1967. 433p.

JANKOWSKY, I.P. **Potencialidade do creosoto de** *Eucalyptus* spp, como preservativo para madeiras. 1986, 159f. Tese (Doutorado em Engenharia) – Escola Politécnica, Universidade de São Paulo, São Paulo.

LELLES, J.G.; REZENDE, J.L.P. Considerações gerais sobre tratamento preservativo da madeira de eucalipto. **Inf. Agropec.**, Belo Horizonte, v. 12, n. 141, p.83-90, 1986.

OLIVEIRA, A.M.F.; LELIS, A.T.; LEPAGE, E.S.; et al. Agentes destruidores da madeira. In: LEPAGE, E.S. (Coord.). **Manual de preservação de madeiras.** São Paulo: IPT, 1986. v. 1. p. 99-**279.**

PAES, J. B. Efeitos da purificação e do enriquecimento do creosoto vegetal em suas propriedades preservativas. 1997. 143f. Tese (Doutorado em Ciência Florestal) – Universidade

Federal de Viçosa, Viçosa.

PAES, J.B.; MORAIS, V.M.; LIMA, C.R. Resistência natural de nove madeiras do semi-árido brasileiro a cupins subterrâneos, em ensaio de preferência alimentar. **Brasil Florestal**, Brasília, v.20, n.1, p. 59-69, 2001.

PAES, J.B.; VITAL, B.R. Resistência natural da madeira de cinco espécies de eucalipto a cupins subterrâneos, em testes de laboratório. **R. Árvore,** Viçosa, v.24, n.1, p. 97-104, 2000.

PANSHIN, A.J.; DE ZEEUW, C. **Textbook of wood technology**. 4. ed. New York: Mc Graw Hill, 1980, 722p.

SCHEFFER, T.C. Microbiological degradation and the casual organisms. In: NICHOLAS, D.D. (Ed.). Wood deterioration and its prevention by preservative treatments: degradation and protection of wood. Syracuse: Syracuse University, 1973. v. 1. p. 31-106.

STEEL, R.G.D.; TORRIE, J.H. **Principles and procedures of statistic:** a biometrical approach. 2. ed. New York: Mc Graw Hill, 1980, 633p.

WILLEITNER, H. Laboratory tests on the natural durability of timber-methods and problems. Stockholm: The International Research Group on Wood Preservation, 1984. 11p. (Doc. IRG/WP/2217).