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Abstract
Forest burning susceptibility mapping is a tool to mitigate wildfires, with several methods to develop them. This 
study aimed to compare the Analytic Hierarchy Process (AHP), Multiple Linear Regression (MLR), and Random 
Forest (RF) methods for mapping. Several variables were used to generate the maps. For MLR and RF methods, 
fire frequency between 1990 and 2010 was used as the response variable in the models. To validate the methods 
(AHP, MLR and RF), fire data between 2011 and 2018 were used in four stages. RF was the best method employed. 
Correct and incorrect values for this method were 74% and 26% and AUC 0.66. The sensitivity and specificity for 
the highest risk class were 31% and 96%. The low sensitivity values   can be attributed to the randomness attributed to 
anthropic fire. The high specificity values   point to a good separation of the higher risk class compared to the others.
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1. INTRODUCTION AND OBJECTIVES

In Mediterranean Europe, the frequency and size of forest 
fires have increased dramatically in recent decades (San-Miguel-
Ayanz et al., 2013; Francos et al., 2018). Among the affected 
countries, Portugal is the worst hit by forest fires (Tonini et 
al., 2017), including some notable events, such as those in 
the central region, in 2017, which caused 113 deaths, and the 
one in Castelo Branco, in 2019, which resulted in dozens of 
injuries. Also, the report of the Instituto da Conservação da 
Natureza e das Florestas (ICNF) explains that, for the past 10 
years, nearly 132,049 hectares of forests and shrublands in 
Portugal were burned per year, which constitutes about 2.87% 
of the total area of   these classes (i.e., forests and shrublands) 
(DGTERRITÓRIO, 2019a; ICNF, 2019a). Besides, the north 
region of Portugal has a high fire frequency, compared to 
the rest of the country (Parente et al., 2018; ICNF, 2019b). 

Wildfires are responsible for numerous environmental 
impacts, being able to shape the landscape and change the 
habitat, flora and fauna structures, reducing the forest and 
other natural environments area (Aximoff & Rodrigues, 2011; 
Camargo et al., 2018). In addition to environmental damage, 
fires are a social and economic threat (Jafari Goldarag et al., 
2016; Kayet et al., 2020), as they endanger the population 
property and contribute to CO2 and air pollutant emissions, 
which impacts the air quality and reduces the productivity 
of the ecosystems (Torres et al., 2018; Sannigrahi et al., 2020; 
Yin et al., 2020). Several studies indicate that global climate 
change can be a driving factor for the increased occurrence 
and severity of fires (Bedia et al., 2014; Eugenio et al., 2016; 
Da Silva Junior et al., 2020; Stephens et al., 2020). However, 
most fires are caused by human factors, such as incendiary 
fire, debris burning, smoking, campfire, railroad, children, 
and equipment use (Grala et al., 2017). Due to this human 
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behavior factor, in addition to factors such as climate, 
topography, species composition, and soil type (Harris & 
Taylor, 2017; Keyser & Leroy Westerling, 2017; Whitman et 
al., 2018; Mitsopoulos et al., 2019), identifying areas of high 
and low risk is not always a trivial task.

Several tools are used to prevent the occurrence and 
mitigate the negative impacts of the fires, such as the forest 
burning susceptibility maps, often generated from historical 
data of fire occurrence (Ferreira et al., 2015; Guglietta et al., 
2015; Parente & Pereira, 2016; Rodrigues et al., 2020). These 
maps can be generated from different methodologies (Pan 
et al., 2016; Akinola & Adegoke, 2019; Mota et al., 2019; 
Abedi Gheshlaghi et al., 2020; Tonini et al., 2020), such as 
statistical methods (Bui et al., 2016; Gholamnia et al., 2020) 
and hierarchical methods (Eugenio et al., 2016). However, 
there is no universal method for all situations, since their 
effectiveness varies according to the region and the spatial 
data resolution available for analysis. Thus, understanding the 
dynamics of the factors affecting BS is extremely important 
for the process of decision-making regarding fire prevention 
and management (Duarte & Teodoro, 2016; Pourtaghi et al., 
2016; Pourghasemi et al., 2020).

Several methodologies are used to evaluate the BS map 
accuracy. The Area under the curve (AUC) method is one of 
the most used (Pourghasemi et al., 2016; Abedi Gheshlaghi et 
al., 2020; Razavi-Termeh et al., 2020; Rodrigues et al., 2020). 
It assesses BS into “correct” and “incorrect” classification, 
while other methods work on the relationship between the 
burned area and BS classes (Eskandari, 2017; Leuenberger 
et al., 2018; Gigović et al., 2019;). Not so widely used in BS 
studies, sensitivity analysis is another validation method widely 

used in model validation in other areas of science (Albano 
et al., 2019; Arabameri et al., 2019; De Araújo Carvalho et 
al., 2020; Lee et al., 2020). 

The present research aimed to verify the possibility of 
modeling and validating maps of BS, using land cover/use, 
topographic and climatic variables by applying different 
methods, with the aid of historical fire data. Thus, in this 
study, three different approaches were used to map the BS 
in the vegetated areas of Northern Portugal, which were 
subsequently compared with the aid of different validation 
methods. Finally, it was also evaluated whether the BS classes 
can be used as guidelines for decision-making in the control 
and management of fires, prioritizing the greatest BS areas.

2. MATERIALS AND METHODS

2.1. Study area

The study was conducted in the north region of Portugal,  
which comprises  the districts of Viana do Castelo, Braga,  
Porto, Vila Real and Bragança. With approximately 21,278 km², 
the area is mainly covered by forest stands and shrublands 
(Figure 1) and has an estimated population of 3,575,338 
inhabitants (INE, 2020a). The climate is characterized as 
Mediterranean with Atlantic influence, with climate types Csa 
(temperate with hot and dry summer) and Csb (temperate 
with dry or temperate summer), according to Köppen–Geiger 
Climate (Fernandes et al., 2020). The altitude ranges from 
sea level to 1527 m. The average temperature in the region 
is 13.8 °C, with minimum and maximum values   of 7.9 °C 
and 19.7 °C, respectively (INE, 2020b).

Figure 1. Study area and frequency of fires from 1990 to 2018 (ICNF, 2019a).
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2.2. The datasets

The data used to map the BS includes the history of the 
burned area, acquired from the ICNF (ICNF, 2019b); land 
use/cover of 2010 and 2018, for the study modeling and 
validation, respectively; roads and topography, obtained 
from the Direção-Geral do Território (DGTerritório) 
(DGTERRITÓRIO, 2003, 2017, 2019a); and historical 
temperature and precipitation data from the Sistema Nacional 
de Informação de Recursos Hídricos (SNIRH) (SNIRH, 
2020). The land cover maps were developed from 25 cm 
resolution images, generalized to 1 ha cells, according to 
technical specifications (DGTERRITÓRIO, 2018, 2019b).

2.2.1. Historical fire data

Polygons of fire between 1990 and 2018 (Figure 1) derived 
from a dataset with a resolution of 100 m were used (ICNF, 
2019b). Afterwise, the fire frequency from 1990 to 2010 was 
calculated for modeling BS by the Multilinear Regression 
(MLR) and Random Forest (RF) methods, while the frequency 
from 2011 to 2018 was calculated for validating the results 
of the BS maps.

2.2.2. Variables related to the land use/cover

From land use/cover (LU/LC) data, it was generated, for 
2010 and 2018, the Euclidean distance, up to a limit of 2 km, 
of the classes: urban areas (URB), agriculture (AGR) and water 
bodies (DWB) The first two were interpreted as anthropic 
influence regions directly related to the BS.  The distance 
from water bodies (DWB), started from the premise that 
vegetation closer to water are benefited by higher humidity 
in the soil, being less fire prone (Busico et al., 2019). The 
vegetated areas were classified into five classes (VGT), which 
weight were defined as: hardwoods (0.59), conifers (0.57), 
eucalyptus (0.39), agroforestry systems (0.34) and shrublands 
(2.52) (Carmo et al., 2011).

2.2.3. Roads

The road network was used to determine the Euclidean 
distance from roads (ROD) for the study area, with a maximum 
distance of 2 km established as their area of   influence in the BS.

2.2.4. Topography

The slope (SLP), its aspect orientation (ASP) and the elevation 
(ELV) were generated from 10 m contour lines. The weights 
of the ASP were classified into five classes which weights were 

defined as: flat (0.55), north (1.04), east (1.03), south (0.85) and 
west (0.95) (Carmo et al., 2011). These variables have a strong 
influence on the ignition and spread of fires (Catry et al., 2009; 
Li et al., 2014; Sivrikaya et al., 2014; Çolak & Sunar, 2020).

2.2.5. Temperature and precipitation

Temperature (TMP) and precipitation (PCP) were 
obtained from meteorological stations (SNIRH, 2020) for 
the dry period of the hydrological year of Portugal (May – 
September), using the mean temperature and accumulated 
precipitation from available dataset, furtherly interpolated 
for the study area applying ordinary kriging adopting the 
inverse distance squared method. For precipitation, 220 
hydrometric stations, distributed in the study area and for 
temperature, data from 13 stations were used. Despite the 
low sampling, the weather stations with temperature data are 
well distributed in the study area and considered sufficient for 
the thermo-climate characterization on a regional scale. For 
the modeling, a period from 1990 to 2010 was used, while for 
the validation, historical data from 1990 to 2018 were used.

2.3. Burning susceptibility mapping

2.3.1. Fuzzy logic and Analytical Hierarchy 
Process (AHP)

The Fuzzy logic was used for data reclassification (Zadeh, 1965), 
which generated gradual associations of pixels or segments to 
one or more classes (Abedi Gheshlaghi et al., 2020). In other 
words, the variables were spread to a scale from 0 to 255, through 
a linear association. The reclassification of each continuous 
variable was based on its implications for burning. So, the 
higher the TMP, SLP and DWB the greater the BS (Verde & 
Zezere, 2010; Carmo et al., 2011; Busico et al., 2019), while 
for PCP, AGR and ROD, it has an inverse relationship, that 
is, lower values   imply a greater BS (Duarte & Teodoro, 2016; 
Eugenio et al., 2016; Sakellariou et al., 2019). The ELV was 
reclassified according to Verde & Zêzere (2010), where burning 
probability increases up to an altitude of 1300 m, and reduces 
to higher elevations. VGT was classified according to section 
2.2.2, and later stretched linearly to the same scale (0 to 255).

Then, the Analytical Hierarchy Process (AHP) methodology 
was applied, which consists of valuing the importance of 
one factor relative to the others and obtaining a final weight 
for each of the parameters (Saaty, 1977). Then, the scale of 
importance was defined based on the literature (Moreira et al., 
2009; Parente et al., 2018; Busico et al., 2019). The consistency 
of the execution was analyzed using the Consistency Ratio 
(CR), according to Equation (1).  
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        (1)

where, CR: Consistency Ratio, CI = Consistency Index, RI: 
Random Index.

Based on these factors, all input layers were combined 
according to their respective weights, thus generating a 
final map.

2.3.2. Multiple Linear Regression (MLR)

In the multilinear regression analysis, a linear model 
was adjusted to estimate the BS (Equation 2), using a least-
squares approach for multiple regression. The frequency 
calculated between the years 1990 and 2010 was set as the 
response variable in the models, as described in section 2.2.1.  
The F-test was automatically made by the software.

     (2)

Where: Y = response variable (frequency of fires);  
 = intercept;   = model parameters;  = explanatory 

variables;  = Random error associated with the model. 
Further details of the method can be found in Clark & 

Hosking (1986) and Kleinbaum et al. (1988).

2.3.3. Random Forest

The algorithm based on decision trees Random Forest 
(Breiman, 2001) was the third method to generate the BS 
maps. This method is based on several decision trees from 
random selection with variable and observation replacement 
(bootstrap). This process is repeated several times to generate 
a decision tree that makes non-biased predictions. More 
details on how this method works can be found in Breiman 
(2001). The sampling was carried out in a stratified manner, 
according to the number of fires that occurred (Table 1). 
The algorithm was trained using the fire frequency values   
generated from the historical data of fires between 1990 and 
2010, as a response variable. The number of decision trees 
was set at 500 and, for the number of variables randomly 
sampled in each “node” (mtry), values of 2, 3, and 4 were 
tested. The best model was selected based on the correlation 
coefficient between the predicted and observed values in the 
validation. The data were separated into 5 groups, and one 
was removed at each interaction for validation (5 -fold cross-
validation). The training and validation of the algorithm were 
conducted using the Caret package (Kuhn, 2019) present in 
the R software system, version 3.6.2 (R CORE TEAM, 2018).

Table 1. Number of pixels of the vegetated area in the study area in 
which fires occurred 0, 1, 2 - 3, 4 - 5 and more than 5 times, and number 
of pixels of each class used to train the Random Forest algorithm.

  Total Area Sample (n)
Free-fire pixels 689,088 13,782
Pixels with 1 fire 215,055 4,301
Pixels with 2 or 3 fires 100,501 2,010
Pixels with 4 or 5 fires 35,555 711
Pixels with more than 5 fires 17,680 354
Total pixels 1,057,879 21,158

2.4. Validation and assessment of burning 
susceptibility map quality

Validation was conducted using data from fires that 
occurred between 2011 and 2018 to verify the efficiency 
of the methods for years not used during modeling. It was 
carried out in two parts.

In the first validation part, the BS maps generated by each 
method were reclassified into “High BS” and “Low BS”, thus 
splitting the estimated risk values of the methods in half. The 
map from this classification was crossed with the total burned 
area in the years from 2011 to 2018. For each intersection, 
we defined as: “Correct” the areas that did not burn and were 
considered as Low BS and the burned area considered “High 
BS”; and “Incorrect” the burned area considered low BS and 
the area that did not burn considered “High BS”. Furthermore, 
we calculated the Area Under the Curve (AUC) (Equation 4) 
as a summary of the Receiver Operating Characteristic (ROC) 
(Bradley, 1997). The AUC can be interpreted as the probability 
that a randomly picked burned area will be classified as 
“High BS” compared to an unburned area. Values below 0.6 
can be considered as unsuitable; values between 0.6 and 0.7 
indicate poor performance; between 0.7 and 0.8, moderate; 
between 0.8 and 0.9, good performance; and between 0.9 
and 1.0 means excellent performance (Tien Bui et al., 2018; 
Shang et al., 2020). 

     (4)

Where: AUC = area under the curve. TP = burned areas 
classified as “High BS” (true positive); FN = burned areas not 
classified as “High BS” (false negative); FP = areas classified as 
“High BS” that did not burn (false positive); TN = areas that 
did not burn and were classified as “Low BS” (true negative). 

In the second validation part, the BS values estimated 
were reclassified into five classes: very low, low, medium, high 
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and very high. Likewise, the fire frequency map, from 2011 
to 2018, was reclassified and used as a basis for comparison, 
using the “natural breaks” option of the ArcMap reclassify 
function, in which breaks are defined to create groups with 
similar values and maximizes the differences between classes. 
We also calculated the proportion of burned area to the total 
area of each class.

Furthermore, we calculated the classification sensitivity 
and specificity for the BS class “Very high”. The sensitivity 
is the percentage of high-risk areas correctly (Equation 5) 
while the specificity indicates the proportion of areas that 
were correctly not classified as “Very high” (Equation 6). 
This calculation was carried out to identify if the methods 
parsimoniously classified the “High BS” areas. 

                                              (5)

                                  (6)

Where: TP = number of cells correctly classified as “Very 
high” BS (true positive); FN = number of cells that should 
be classified as “Very high” but were not (false negative); TN 
= number of cells out of the “Very high” BS class that were 
correctly classified (true negative); FP = number of cells that 
were wrongly classified as “Very high” BS (false positive).

The best method for mapping BS was defined according 
to the performance in the two validation steps. The workflow 
of the methodology is presented in Figure 2.

Figure 2. Flowchart of the methodology used to model burning susceptibility using the Analytic Hierarchy Process (AHP), Multiple Linear 
Regression (MLR) and Random Forest (RF) methods for northern Portugal.     

3. RESULTS

The parameters used to generate the BS maps using 
the AHP, MLR and RF found using the fire frequency data 
are presented in Tables 2 and 3. The CR calculated for the 
AHP method was 0.01, which is less than the threshold 
(0.1) (Kayet et al., 2020), so the consistency is acceptable 

(Table 2). The methods MLR and RF presented correlation 
coefficient (r), equal to 0.34 and 0.62, respectively  
(Table 3). The MLR presented a f-value of 13691.59668 
with 10 degrees of freedom of the regression and 1065441 
of residuals, being higher than the critical f-value for 0.05 
significance level (1.830713), which means the model is 
significant.
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Table 2. Pairwise comparison of factors for Forest Burning susceptibility and their respective parameters for the Analytical Hierarchy 
Process (AHP) for modeling burning susceptibility areas.

Parameter VEG URB SLP ASP PCP TMP ELV AGR DWB ROD Weight
VEG 1 1 2 3 4 4    4    5    5    5    0.2295
URB 1    1    2    3    4    4    4    5    5    5    0.2295
SLP  1/2  1/2 1    2    3    3    3    4    4    4    0.1534
ASP  1/3  1/3  1/2 1    2    2    2    3    3    3    0.0999
PCP  1/4  1/4  1/3  1/2 1    1    1    3    3    3    0.0603
TMP  1/4  1/4  1/3  1/2 1    1    1    2    2    2    0.0603
ELV  1/4  1/4  1/3  1/2  1/2 1    1    2    2    2    0.0603
AGR  1/5  1/5  1/4  1/3  1/3  1/2  1/2 1    1    1    0.0356
DWB  1/5  1/5  1/4  1/3  1/3  1/2  1/2 1    1    1    0.0356
ROD  1/5  1/5  1/4  1/3  1/3  1/2  1/2 1    1    1    0.0356

Table 3. Parameters associated with the Multiple Linear Regression (MLR) and Random Forest (RF) methods for modeling burning 
susceptibility areas. r = correlation coefficient.

Method Parameters r

MLR 0.33744

RF n = 500; mtry = 4 0.62122

The RF method had the highest area considered as 
“Correct” and (Table 4). Figure 3 shows the distribution of 
the “Correct” and “Incorrect” classification on the study area, 
illustrating the higher precision of the RF method. All the 
methods presented AUC near 0.6, with RF also standing out 
with the highest value (0.66). 

For the second validation part, the maps presented different 
characteristics (Figure 4). In general, the AHP method presented 
a greater area in the classes of greater risk, compared to MLR 
and RF. The AHP also had “High” and “Very high” classes more 
distributed in the study area, whereas in MLR and RF, these 
classes were mainly found in the west part of the study area.

Table 4. Proportion of “Correct” and “Incorrect” classification and area under the curve (AUC) for the burning susceptibility maps 
generated using the Analytic Hierarchy Process (AHP), Multiple Linear Regression (MLR) and Random Forest (RF) methodologies. 
“Correct” = Burned areas classified as “High burning susceptibility” or unburned areas classified as “Low risk”; “Incorrect” = Unburned 
areas classified as “High burning susceptibility” or burned areas classified as “Low burning susceptibility”.

Method Correct (%) Incorrect (%) AUC
AHP 65 35 0.57
MLR 66 34 0.63
RF 74 26 0.66
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Figure 3. Map of the regions correctly and incorrectly classified for the first validation part based on the burning susceptibility maps 
generated using Analytic Hierarchy Process (AHP), Multiple Linear Regression (MLR) and Random Forest (RF) for the north of Portugal. 
“Correct” = Burned areas classified as “High burning susceptibility” or unburned areas classified as “Low risk”; “Incorrect” = Unburned 
areas classified as “High burning susceptibility” or burned areas classified as “Low burning susceptibility”.

Figure 4. Burning susceptibility map using the Analytic Hierarchy Process (AHP), Multiple Linear Regression (MLR) and Random Forest 
(RF) for the northern region of Portugal.
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RF and MLR were more consistent regarding the relative 
burned area per class (Figure 5). The burned area grows, 
following the increased susceptibility for RF and MLR, 
fact not observed for AHP. More than 60% of the total area 
classified as “Very high” BS by RF was burned (Figure 5) 
between 2011 and 2018.

Figure 5. Relative burned area from 2011 to 2018 by burning 
susceptibility class defined by the Analytic Hierarchy Process 
(AHP), Multiple Linear Regression (MLR) and Random Forest 
(RF) methods using data from previous years (1990-2010).

All the methods presented relatively high specificity 
(> 85%) and low (< 31%) sensitivity for classifying the  
“Very high” BS class. The RF method presented the highest 
values for both sensitivity and specificity - 31% and 96%, 
respectively (Table 5). Despite having a similar specificity 
value (94%), MLR presented low sensitivity.

Table 5. Sensitivity and specificity for classifying “Very high” BS 
areas using the Analytic Hierarchy Process (AHP), Multiple Linear 
Regression (MLR) and Random Forest (RF) methods

Method Sensitivity (%) Specificity (%)
AHP 29 85
MLR 15 94
RF 31 96

4. DISCUSSION

In this study, we evaluated three BS mapping methods 
using fire frequency data from the north region of Portugal. 
The RF method presented the best performance in both 
validation steps. Recent studies have also demonstrated the 

efficiency of this method for fire risk and hazard mapping using 
different data sources and at different scales (Leuenberger et 
al., 2018; Gigović et al., 2019; Gholamnia et al., 2020; Shang 
et al., 2020; Tonini et al., 2020). This method is probably 
favored by its characteristics of building several decision 
trees during the training process by having high tolerance 
to outliers and noisy data (Oliveira et al., 2012; Rodrigues 
& De La Riva, 2014; Su et al., 2018). As modeling involves 
several intricate errors, and those might also present self-
correlation, the other tested methods might not incorporate 
all the necessary data complexity. Another RF advantage is 
the fact that it does not depend on prior knowledge of how 
each factor affects fire, as this is defined during the training 
process. This might facilitate its application, since the factors 
that most affect fire ignition can vary according to the region 
(Eugenio et al., 2016; Ma et al., 2020).

It is known that the primary goal of fire susceptibility 
studies is locating areas of greater susceptibility for fire 
management and suppression (Turkman et al., 2014), 
which makes it imperative focusing the methods predicting 
susceptible areas to the detriment of low-risk areas,  assisting 
the correct distribution of efforts for fire control. The AHP 
and MLR methods had similar accuracy in the two classes 
susceptibility classification (i.e., High BS and Low BS). The 
AUC index classifies the AHP as inadequate, while the MLR 
and RF presented poor performance (Ngoc Thach et al., 2018; 
Tien Bui et al., 2018). The best method (RF) used in this study 
presented an AUC value of 0.66, which is below the values 
found by other studies (Pourtaghi et al., 2016; Gholamnia  
et al., 2020; Rodrigues et al., 2020). The methods of low 
suitability can be explained by several factors. It is known, 
for example, that warmer and drier areas are more prone to 
fires (Sousa et al., 2015; Pourghasemi et al., 2016; Tosic et al., 
2019; Živanović et al., 2020), because they accelerate fuel 
moisture content reduction (Keyser & Leroy Westerling, 2017). 
However, in our study area, such behavior was not observed, 
which reveals the low significance of these factors for BS 
mapping. Also, the anthropic factors randomness, as well 
as their low detail, may have reduced the efficiency of the 
methods, since the fire frequency is highly related to human 
action (Ganteaume et al., 2013; Oliveira et al., 2017; Elia  
et al., 2019). Nevertheless, the use of future data (2011-2018) 
for validation compared to those used for modeling (1990-
2010) may also have reduced precision in the BS prediction.

In the BS maps, the RF efficiency is more evident, mainly 
when assessing the relative burned area per class, where more 
than 60% of the area classified as “Very high” BS has burned. 
Another study found similar results, where approximately 
40% of the highest susceptibility class burned (Leuenberger 
et al., 2018). The low sensitivity values can be related to the 
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short period used to validate the maps (2011 to 2018), since 
the burned areas may not be enough to validate. In this 
period, areas where the fire was more frequent burned four 
times. Furthermore, methods such as the RF might perform 
better when applied to the range of the dataset used for 
training, and some of the variables such as temperature and 
precipitation might have changed from one dataset (1990 
– 2010) to the other (2011 – 2018). It is worth noting that 
the specificity values were relatively high for all methods (> 
85%), especially for RF (96%). This assessment, associated 
with the high values of the relative burned area, indicates that 
the BS map generated from fire frequency data is helpful in 
the segmenting areas from low to high BS. 

The framework used here can be replicated for different 
regions, considering the characteristics of each method.  
The AHP has the advantage of not requiring the fire frequency 
data. However, this issue can be overcome given the availability 
of orbital data and constant monitoring of fire hotspots 
(Bernier et al., 2016; Adab, 2017; Aini et al., 2019). This is 
especially important for regions where fire data is difficult 
to access or resources are insufficient for collection, which 
can be observed mainly in developing countries with large 
territorial extensions (Lim et al., 2019), like Brazil (Caúla 
et al., 2015; Da Silva Junior et al., 2020).

This study focused on BS mapping by incorporating 
variables related to the susceptibility of burning. Further studies 
may consider each element separately since they can target 
different prevention strategies and that there is more uncertainty 
regarding the ignition probability as it is related to the random 
factor attributed to anthropic activities (Bui et al., 2016). It is 
also possible to separate urban areas and vegetation into more 
specific classes for more representative models. Besides that, 
unavailable temperature or precipitation data on some stations 
might have interfered on the accuracy of the models.

The framework implemented here can be used in the 
development of local BS maps to facilitate decision making 
(Vallejo-Villalta et al., 2019; Ma et al., 2020). In addition, it is 
important to evaluate the methods quality in segmenting very 
high BS areas, as the under-detection can leave areas that need 
attention out of the planning, while over-detection can make 
it difficult to assign the available resources. We expect that 
this study will contribute to the improvement of BS mapping 
methodologies and favor regional mitigation planning strategies 
to reduce the negative impacts caused by fires.

5. CONCLUSIONS

The RF method presented the best performance, 
incorporating the variability and interactions of the variables 
that affect BS. This method had high specificity for mapping 

“Very high” BS areas, showing to be adequate to elaborate 
BS maps at different times. This method can contribute to 
the improvement of BS mapping at similar scales (~ 100m) 
and assist professionals and researchers in decision-making 
regarding regionally applied mitigation actions.
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